矩阵知识:矩阵乘法、单位矩阵、数量矩阵、初等矩阵、行等价

一、从高斯消元法到矩阵乘法:

1.1 高斯消元法

假设存在如下的方程:
在这里插入图片描述
将方程化为如下的形式是高斯消元法的目标:
{ R = ? G = ? B = ? \begin{cases} R=?\\G=?\\B=? \end{cases} R=?G=?B=?

思路:
首先利用第一行消去第二行和第三行的第一个元素:
在这里插入图片描述
接着利用第二行消去第三行的第二个元素:
在这里插入图片描述
接着反过来,用第三行消去第一行和第二行的第三个元素:
在这里插入图片描述
接着用第二行消去第一行的第二个元素:
在这里插入图片描述
最后达到目标:
在这里插入图片描述

1.2 用增广矩阵描述高斯消元法

假设方程为:
在这里插入图片描述
则增广矩阵为:
在这里插入图片描述
整个过程可以描述为:
在这里插入图片描述

1.3 利用矩阵乘法:

上述过程的第一次运算用矩阵乘法可以描述为:
在这里插入图片描述
在这里插入图片描述
多行乘法:
在这里插入图片描述
这一步实际表达了两个过程:

  • 第一行不变: r 1 ′ = r 1 r_1'=r_1 r1=r1
  • 第二行改变: r 2 ′ = r 2 − 3 r 1 r_2'=r_2-3r_1 r2=r23r1

用矩阵乘法则表示为:
在这里插入图片描述
所以利用矩阵乘法,整个高斯消元法就可以表示如下:
在这里插入图片描述
https://www.matongxue.com/madocs/755.html

二、如何理解矩阵乘法:

一个正确的观点是将矩阵看成是函数,这样很多疑惑就可以迎刃而解。

2.1 矩阵是一个函数:

直线函数与矩阵:
我们熟悉的直线函数 a x = y ax=y ax=y ( x , 0 ) (x,0) (x,0)点映射到 ( 0 , a x ) (0,ax) (0,ax)点:
在这里插入图片描述
我们通过矩阵 A x → = y → A\overrightarrow{x}=\overrightarrow{y} Ax =y 也可以完成这个映射,令:
A = ( 0 1 a 0 ) A=\begin{pmatrix} 0&1\\a&0 \end{pmatrix} A=(0a10)
则:
在这里插入图片描述
矩阵的优点:
对于 a x = y , x ∈ R , y ∈ R ax=y,x\in R,y\in R ax=y,xR,yR只能完成从实数到实数的映射:
x → y    ⟹    R → R x\to y\implies R\to R xyRR
但是: A x → = y → , x → ∈ R n , y → ∈ R m A\overrightarrow{x}=\overrightarrow{y},\overrightarrow{x}\in R^n,\overrightarrow{y}\in R^m Ax =y ,x Rn,y Rm可以完成更广泛的映射:
x → → y →    ⟹    R n → R m \overrightarrow{x}\to \overrightarrow{y}\implies R^n\to R^m x y RnRm
为了完成这点,矩阵 A A A就不再是系数a了,而是一个函数(或者说是映射)
假设 x → \overrightarrow{x} x 所在平面为 v v v,而 y → \overrightarrow{y} y 所在平面为 W W W x → \overrightarrow{x} x 通过矩阵 A A A映射到了 y → \overrightarrow{y} y ,可以如下表示:
在这里插入图片描述
A这个映射的特别之处是,V上的直线通过A映射到W上依然是直线,所以矩阵也被称为线性映射。

2.2 矩阵作为函数的工作方式:

将之前表示线性映射的3D图变为2D图:
在这里插入图片描述
为了绘图方便, x → \overrightarrow{x} x 所在平面V, y → \overrightarrow{y} y 所在平面W,都是二维平面,即 R 2 R^2 R2

坐标:
研究线性映射,最重要的是搞清楚当前处在哪个基下,首先看:
在这里插入图片描述
x → \overrightarrow{x} x , y → \overrightarrow{y} y 的基默认为各自空间向量空间下的自然基,其自然基为(即 R 2 R^2 R2下的自然基):
在这里插入图片描述
所以可以得到:
在这里插入图片描述
如下图所示:
在这里插入图片描述
映射法则的工作原理:
为了说清映射法则A是怎么工作的,将A用一个空间表示,V会通过A映射到W:
设: A = ( c 1 → c 2 → ) A=(\overrightarrow{c_1}\quad\overrightarrow{c_2}) A=(c1 c2 )
整个映射过程如下所示:
在这里插入图片描述
根据矩阵乘法的规则可以得到(可以理解为 c 1 → , c 2 → \overrightarrow{c_1},\overrightarrow{c_2} c1 ,c2 两个向量的一个线性组合):
在这里插入图片描述
A x → A\overrightarrow{x} Ax 相当于在A空间中,以 c 1 → , c 2 → \overrightarrow{c_1},\overrightarrow{c_2} c1 ,c2 为基,坐标为 ( x 1 x 2 ) \begin{pmatrix}x_1\\x_2\end{pmatrix} (x1x2)的向量:
在这里插入图片描述
再将 A x → A\overrightarrow{x} Ax 向量用自然基表示:
在这里插入图片描述
整体来说,就是基改变,导致向量的坐标发生改变:
在这里插入图片描述

注意矩阵乘法不满足交换律
https://www.matongxue.com/madocs/555.html

2.3 矩阵运算所满足的定律
  1. A + B = B + A ( 加 法 交 换 律 ) A+B=B+A(加法交换律) A+B=B+A
  2. A + ( B + C ) = ( A + B ) + C ( 加 法 结 合 律 ) A+(B+C)=(A+B)+C(加法结合律) A+B+C=A+B+C
  3. A ∗ ( B ∗ C ) = ( A ∗ B ) ∗ C ( 乘 法 结 合 律 ) A *(B * C)=(A*B)*C(乘法结合律) ABC=ABC
  4. A ∗ ( B + C ) = A ∗ B + A ∗ C ( 分 配 律 ) A*(B+C)=A*B+A*C(分配律) AB+C=AB+AC
  5. k ∗ ( A + B ) = k ∗ A + k ∗ B k*(A+B)=k*A+k*B kA+B=kA+kB
  6. ( A + B ) ∗ C = A ∗ C + B ∗ C 9 ( 分 配 律 ) (A+B)*C=A*C+B*C9(分配律) (A+B)C=AC+BC9
  7. A ∗ I = I ∗ A = A ( 单 位 矩 阵 的 乘 法 属 性 ) A*I=I*A=A(单位矩阵的乘法属性) AI=IA=A

注意上面所有的+都可以替换为-

三、数量矩阵&单位矩阵

3.1 单位矩阵

主对角线上的数字都是1,其余都是0的矩阵称为单位矩阵,即:
( 1 … 0 ⋮ ⋱ ⋮ 0 … 1 ) \begin{pmatrix}1&\dots&0\\\vdots&\ddots&\vdots\\0&\dots&1\end{pmatrix} 1001

3.2 数量矩阵

设I是单位矩阵,k是任何数,则kE称为数量矩阵,即:
k E = ( k … 0 ⋮ ⋱ ⋮ 0 … k ) kE=\begin{pmatrix}k&\dots&0\\\vdots&\ddots&\vdots\\0&\dots&k\end{pmatrix} kE=k00k

四、初等矩阵

初等矩阵是指由单位矩阵经过一次初等变换得到的矩阵。

五、行等价

A和B行等价,就是说A经过若干次初等行变换可以变成B

  • 5
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值